
Albert-Ludwigs-Universität, Institut für Informatik November 30, 2017
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Schneider, J. Uitto

Algorithm Theory - Winter Term 2017/2018

Exercise Sheet 2

Hand in by Thursday 10:15, November 16, 2017

Exercise 1: Tree Embedding into Grids (4+6 Points)

A n×m grid graph is a graph G = (VG, EG) with nodes VG := {(i, j) | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.
These nodes are embedded in the Euclidian plane R2 and connected with edges as exemplified by the
following 4× 15 grid graph.

An embedding of a tree T = (VT , ET) into a grid graph G = (VG, EG) is defined as a one to one
mapping of VT to a subset of VG, which satisfies the following condition. There exists a set PG of
vertex-disjoint paths1 in G such that for each {u, v} ∈ ET , there is a path p ∈ PG connecting u′ to v′,
when u is mapped to u′, and v is mapped to v′.

(a) We can embed a complete binary tree with n leaves into a grid, such that the nodes with height
i of the tree are placed in the ith row of the grid. Below you see the embedding of a tree with 8
leaves into a 4× 15 grid as an example.

By this way of embedding, show that we need a grid of size2 Θ(n log n) to embed a complete tree
with n leaves. To do so, write down the recurrence relations for the width W (n) and the height
H(n) of the grid.

(b) Find a more efficient way of embedding a complete binary tree and show that it needs a grid of
size Θ(n), if the tree has n leaves. Write down the recurrence relations for the width W (n) and
the height H(n) of the grid.

1We define vertex-disjoint paths in G as paths that may only have common endpoints but are disjoint otherwise.
2The size of a n×m grid graph is simply n ·m.

1

Sample Solution

(a) By doubling the number of the nodes the width of the grid doubles and the height of the grid
is increased by one. Therefore, we can have the following recurrence relations for the width and
the height of the grid.

W (n) = 2W (n/2) + Θ(1)⇒W (n) = Θ(n)
H(n) = H(n/2) + Θ(1)⇒ H(n) = Θ(log n)
Therefore, size of the grid is Θ(n log n).

(b) To provide a more efficient way of embedding, we can avoid to place the nodes with same height
in the same row of the grid. You can see below how we can embed a complete binary tree with
16 leaves in a 7× 7 grid.

Here, we have W (n) = H(n) = 2W (n/4) + Θ(1). Therefore, W (n) = H(n) = Θ(
√
n). Hence,

the size of the grid is Θ(n).

Exercise 2: Polynomial to the power of k (4+6 Points)

Given a polynomial p(x) of degree n in coefficient representation and an integer k ≥ 2, the goal of this
problem is to compute the kth power pk(x) of p(x) in an efficient way. For simplicity, we assume that
k is a power of 2, that is, k = 2` for some integer ` ≥ 1.

(a) Describe an efficient algorithm to compute pk(x) polynomial using the fast polynomial multipli-
cation procedure from the lecture.

(b) What is the asymptotic runtime of your algorithm in terms of k and n? Explain your answer.

Sample Solution

(a) We compute the kth power of the polynomial p(x) in coefficient representation by iterative multi-
plication, as

p(x)k = (. . . ((p(x)2)2 . . .)2

where square is taken log k times (assuming k is a power of 2) with the procedure using the FFT

from the lecture.

Algorithm 1 FastPotenciation(p)

q ← p
for i from 1 to ` do

q ← FastPolynomialMultiplication(q, q) . procedure from the lecture using FFT

return q

(b) We know that using the FFT algorithm from the lecture, two polynomials of degree n can be
multiplied in O(n log n) time. Notice that in every iterative step i of the algorithm, we need to

2

multiply two polynomials of degree (2i−1 · n) and get a polynomial of degree (2i · n). Unwrapping
the definition of the O-Notation, we know that for large n and for a c > 0, we can compute the
product of two polynomials of degree (2i−1 · n) in c · 2i · n · log(2i · n). To compute p(x)k (where
k = 2` for some `), there will be log k such iterations.

Therefore, the asymptotic running time of the algorithm (i.e., iterative multiplication of two same
degree polynomials) would be:

log k−1∑
i=0

c · 2i · n · log(2i · n) [where c is the constant in the O(n log n) bound]

Let us compute this sum:

log k−1∑
i=0

c · 2i · n · log(2i · n) = cn ·
log k−1∑
i=0

2i · (i + log(n))

= cn ·
log k−1∑
i=0

i · 2i + cn · log(n) ·
log k−1∑
i=0

2i

≤ cn ·
(

(log(k)− 1) · 2log(k)
)

+ cn · log(n) ·
(

2log(k) − 1
)

≤ cnk · log(nk)

Hence, the asymptotic running time of the algorithm is O(nk · log(nk)).

Exercise 3: Greedy Algorithm (10 Points)

In the following, a unit fraction is a fraction where the numerator is 1 and the denominator is some
integer larger than 1. For example 1/4 or 1/384 are unit fractions.

It is well-known that every rational number 0 < q < 1 can be expressed as a sum of pairwise distinct
unit fractions, e.g., we can write 4

13 as

4

13
=

1

5
+

1

13
+

1

32
+

1

65
.

Interestingly such a decomposition into distinct unit fractions can be computed using a simple greedy
algorithm.

In the following, assume that you are given two positive integers a and b such that b > a. Design a
greedy algorithm to compute integers 0 < c1 < c2 < · · · < ck such that

a

b
=

1

c1
+

1

c2
+ · · ·+ 1

ck
.

Prove that your greedy algorithm always works and that it decomposes a
b into at most a unit fractions.

You can assume that your algorithm can deal with arbitrarily large integer numbers. Note that for
the fraction 4

13 , the standard greedy algorithm computes a decomposition which is different from the
one given above.

Sample Solution

Algorithm Description:

Here we introduce a greedy algorithm which solves the problem in at most a steps for any input
fraction a/b. In the ith step, the algorithm uses the remaining fraction from the previous step and
outputs ci and a remaining fraction ai/bi.

3

Algorithm 2 UnitFracDecomp(a, b)

i← 0, a0 ← a, b0 ← b
while ai 6= 1 do

i← i + 1
Let 1

ci
be the largest unit fraction ≤ ai−1

bi−1
. ci := d biai e does the trick.

ai
bi
← ai−1

bi−1
− 1

ci

return (1
c1
, . . . , 1

ci
, 1
bi

)

To calculate ci and ai/bi in each step the algorithm does the following. If the remaining fraction from
the previous step is a unit fraction (ai−1 = 1) then ci := bi−1 and the algorithm stops. Otherwise, the
algorithm calculates the largest unit fraction 1

ci
smaller than ai−1

bi−1
from the previous step,

1

ci
<

ai−1
bi−1

<
1

ci − 1
.

Then, it calculates the remaining fraction as follows.

ai
bi

:=
ai−1
bi−1

− 1

ci
,

where ci is a positive integer.

Example:

Let us go through an example to see the algorithm more clearly. Consider the example in the exercise,
a/b = 4/13.
1st step, a/b = 4/13: The largest unit fraction smaller than 4/13 is 1/4. Then,

c1 = 4, a1/b1 = 4/13− 1/4 = 3/52.

2nd step, a1/b1 = 3/52: The largest unit fraction smaller than 3/52 is 1/18. Then,

c2 = 18, a2/b2 = 3/52− 1/18 = 1/468.

Since the remaining fraction is a unit fraction, c3 = 1/468, the algorithm stops and decomposition
into sum of unit fractions is complete:

4

13
=

1

4
+

1

18
+

1

468

Analysis:

Now, let us show that the above proposed algorithm always stops in a finite number of steps (at most
a steps) and works properly. To do this, we mention two claims.

Claim 1. In each step, the numerator of the remaining fraction is positive and strictly smaller than
the numerator of the remaining fraction from previous step.
Proof. Fix some step with input fraction of x/y and the generated unit fraction of 1/c. Then the
remaining fraction is xc−y

yc . To prove the claim we should show that xc − y is positive and strictly
smaller than x. We assumed that 1/c is smaller than x/y and also it is the largest possible unit
fraction. Based on the algorithm description we have

1

c
<

x

y
⇒ xc− y > 0 (1)

1

c− 1
>

x

y
⇒ xc− y < x (2)

4

(1) and (2) prove claim 1.

Claim 2. If the algorithm stops after t ≤ a steps there does not exist i 6= j ∈ {1, . . . , t} such that
ci = cj .
Proof. Fix some step r during the execution and let us assume that for round r − 1 the remaining
fraction is ar−1/br−1 and the calculated integer is cr. Then the remaining fraction for round r is

ar
br

=
ar−1
br−1

− 1

cr
=

ar−1cr − br−1
br−1cr

.

Since 1/cr is the largest unit fraction smaller than ar−1/br−1 we have

1

cr − 1
>

ar−1
br−1

⇒ ar−1cr − ar−1 < br−1

⇒ ar−1cr < ar−1 + br−1 < 2br−1

⇒ ar−1
br−1

− 1

cr
<

1

cr

⇒ ar
br

<
1

cr
.

Therefore, cr never be selected for any round r′ ≥ r.

Based on claim 1, the numerator of the remaining fractions strictly decreases after each step and it is
always positive. Therefore, there exists some step with remaining fraction of numerator 1. As a result
the algorithm stops after at most a steps and based on claim 2 it generates the desired sequence of
integers.

Exercise 4: Matroids (6+4 Points)

(a) For a graph G = (V,E), a subset F ⊆ E of the edges is called a forest iff (if and only if) it does
not contain a cycle. Let F be the set of all forests of G. Show that (E,F) is a matroid.

Hint: A forest with k edges and n nodes has n− k connected components.

(b) For a matroid (E, I), a maximal independent set S ∈ I is an independent set that cannot be
extended. Thus, for every element e ∈ E \ S, the set S∪{e}/∈ I.

What are the maximal independent sets of the matroid in (a)?

Sample Solution

(a) We verify the three properties of a matroid (E,F) with ground set E and independent sets F :

(i) Independence of empty set: ∅ ∈ F .

(ii) Hereditary property: For all F ⊆ E and F ′ ⊆ F : F ∈ F =⇒ F ′ ∈ F .

(iii) Augmentation property: F1, F2∈F : |F1|> |F2| =⇒ ∃e ∈ F1\F2 with F2 ∪ {e} ∈ F .

To (i): ∅ does not have a cycle and is therefore a forest, i.e. ∅ ∈ F .

To (ii): Let F ⊆ E and F ′ ⊆ F . This means we obtain F ′ by removing edges from F . Given
that F ∈ F is acyclic and since removing edges does not create any cycles, we have that
F ′ is also acyclic, i.e., F ′ ∈ F .

To (iii): Let F1, F2 ∈ F with |F1|> |F2|. From the Hint we know that F1 has fewer connected
components than F2. Hence there exists at least one component C1 in F1 whose vertices
belong to at least two different components of F2. Since C1 is connected, there exists an
edge e ∈ F1 connecting the two aforementioned components of F2. Hence adding e to
F2 does not create any cycle in F2 and therefore F2 ∪ {e} ∈ F .

5

(b) The maximal independent sets are spanning forests. I.e., a set of spanning trees for all(!) connected
components of G is maximal independent.

6

